Homogenization and structural topology optimization : theory, practice, and software /

Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autor Principal: Hassani, Behrooz, 1960-
Outros autores: Hinton, E. (Ernest)
Formato: Software eBook
Idioma:English
Publicado: London ; New York : Springer, c1999.
Subjects:
LEADER 02602cam a2200337 a 4500
001 c000287050
003 CARM
005 20081001084624.0
007 co cg uuuuu
008 971209s1999 enka b 001 0 eng d
010 |a 97049066 
019 1 |a 13601288  |5 LACONCORD2021 
020 |a 3540762116 (Berlin : acid-free paper) 
035 |a (OCoLC)38096937  |5 LACONCORD2021 
040 |a DLC  |b eng  |c DLC  |d DLC  |d OrLoB-B  |d VCAV 
050 0 0 |a TA658.8  |b .H37 1999 
082 0 4 |a 624.177130151  |2 21 
100 1 |a Hassani, Behrooz,  |d 1960- 
245 1 0 |a Homogenization and structural topology optimization :  |b theory, practice, and software /  |c Behrooz Hassani and Ernest Hinton. 
260 |a London ;  |a New York :  |b Springer,  |c c1999. 
300 |a xxv, 268 p. :  |b ill. ;  |c 24 cm. 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Introduction -- Pt. I. Homogenization. 2. Homogenization Theory for Media with a Periodic Structure. 3. Solution of Homogenization Equations for Topology Optimization -- Pt. II. Topology Optimization. 4. Structural Topology Optimization using Optimality Critieria Methods. 5. Experiences in Topology Optimization of Plane Stress Problems. 6. Topological layout and Reinforcement Optimization of Plate Structures -- Pt. III. Other Methods and Integrated Structural Optimization. 7. Alternative Approaches to Structural Topology Optimization. 8. Integrated Structural Optimization -- App. D. HOMOG Manual -- App. E. PLATO Manual. 
520 |a Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients. Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. 
650 0 |a Structural optimization. 
650 0 |a Topology. 
650 0 |a Homogenization (Differential equations) 
700 1 |a Hinton, E.  |q (Ernest) 
852 8 |b CARM  |h A1:AP36E0  |i C11293  |p 0513320  |f BK 
999 f f |i 3678cc2c-eb4f-59df-b97d-668474668d8e  |s 404819b6-cac3-568c-ab68-b367491844e9 
952 f f |p Can circulate  |a CAVAL  |b CAVAL  |c CAVAL  |d CARM 1 Store  |e C11293  |f A1:AP36E0  |h Other scheme  |i book  |m 0513320