Ruin probabilities /

Guardat en:
Dades bibliogràfiques
Autor principal: Asmussen, Søren
Format: Llibre
Idioma:English
Publicat: River Edge, NJ : World Scientific, c2000.
Col·lecció:Advanced series on statistical science & applied probability ; vol. 2.
Matèries:
Taula de continguts:
  • I. Introduction
  • II. Some general tools and results
  • Martingales
  • Likelihood ratios and change of measure
  • Duality with other applied probability models
  • Random walks in discrete or continuous time
  • Markov additive processes
  • The ladder height distribution
  • III. The compound Poisson model
  • The Pollaczeck-Khinchine formula
  • Special cases of the Pollaczeck-Khinchine formula
  • Change of measure via exponential families
  • Lundberg conjugation
  • Further topics related to the adjustment coefficient
  • Various approximations for the ruin probability
  • Comparing the risks of different claim size distributions
  • Sensitivity estimates
  • Estimation of the adjustment coefficient
  • IV. The probability of ruin within finite time
  • Exponential claims
  • The ruin probability with no initial reserve
  • Laplace transforms
  • When does ruin occur?
  • Diffusion approximations
  • Corrected diffusion approximations
  • How does ruin occur?
  • V. Renewal arrivals
  • Exponential claims. The compound Poisson model with negative claims
  • Change of measure via exponential families
  • The duality with queueing theory
  • VI. Risk theory in a Markovian environment
  • Model and examples
  • The ladder height distribution
  • Change of measure via exponential families
  • Comparisons with the compound Poisson model
  • The Markovian arrival process
  • Risk theory in a periodic environment
  • Dual queueing models
  • VII. Premiums depending on the current reserve
  • The model with interest
  • The local adjustment coefficient. Logarithmic asymptotics
  • VIII. Matrix-analytic methods
  • Definition and basic properties of phase-type distributions
  • Renewal theory
  • The compound Poisson model
  • The renewal model
  • Markov-modulated input
  • Matrix-exponential distributions
  • Reserve-dependent premiums
  • IX. Ruin probabilities in the presence of heavy tails
  • Subexponential distributions
  • The compound Poisson model
  • The renewal model
  • Models with dependent input
  • Finite-horizon ruin probabilities
  • Reserve-dependent premiums
  • X. Simulation methodology
  • Generalities
  • Simulation via the Pollaczeck-Khinchine formula
  • Importance sampling via Lundberg conjugation
  • Importance sampling for the finite horizon case
  • Regenerative simulation
  • Sensitivity analysis
  • XI. Miscellaneous topics
  • The ruin problem for Bernoulli random walk and Brownian motion. The two-barrier ruin problem
  • Further applications of martingales
  • Large deviations
  • The distribution of the aggregate claims
  • Principles for premium calculation
  • Reinsurance
  • App. A1. Renewal theory
  • App. A2. Wiener-Hopf factorization
  • App. A3. Matrix-exponentials
  • App. A4. Some linear algebra
  • App. A5. Complements on phase-type distributions.